EIDMA

Lecture 7

- *mod n* operations cont.
- Groups
- *inf* and *sup* of a poset
- Order preserving functions

From last week:

Prove

(1) $(\forall p)$ (($p \mod n$) $mod n = p \mod n$) and (2) $(\forall p,q)$ ($(p+q)mod n = (p \mod n + q \mod n)mod n$). Part (1) is obvious.

Part (2). Suppose $p \pmod{n} = r_p$ and $q \pmod{n} = r_q$ that is, for some k_p, k_q we have $p = k_p n + r_p$ and $q = k_q n + r_q$ with $0 \le r_p, r_q < n$. Now, $(p + q) \mod{n} = (k_p n + r_p + k_q n + r_q) \mod{n} = (n(k_p + q_p) + r_p + r_q) \mod{n} = (r_p + r_q) \mod{n} = (p \mod{n} + q \mod{n}) \mod{n}$.

Definition.

An algebra (G,*) is a group iff

- 1. * is associative,
- 2. has an identity element $e: (\forall x \in G)(x * e = e * x = x)$
- 3. every element of G is invertible: $(\forall x \in G)(\exists y \in G)(x * y = y * x = e)$
- If * is commutative, the group is called *Abelian* (or *commutative*).

Fact.

Denote $\mathbb{Z}_n = \{0, 1, \dots, n-1\}$. (\mathbb{Z}_n, \oplus) is an Abelian group. **Comprehension.**

Is $(\mathbb{Z}_n, \bigotimes)$ an Abelian group? For every n? For some? Never? Find 10 more examples of Abelian groups.

Comprehension – answer.

Is $(\mathbb{Z}_n, \bigotimes)$ an Abelian group?

The answer is obviously NO because 0 is not invertible, in *mod* n arithmetic, just as it is not in usual arithmetic. (To verify this notice that $0 \otimes k = 0$ for every *k*, hence it is never equal to 1).

Comprehension – answer.

Is $(\mathbb{Z}_n \setminus \{0\}, \otimes)$ an Abelian group? Solution. $(\mathbb{Z}_n \setminus \{0\}, \otimes)$ is a group iff *n* is a prime.

(⇒) By contradiction. If n=pq, p,q>1 then $p\otimes q = 0$, hence it is not an algebra, so it is not a group.

(\Leftarrow) We know that \otimes is commutative, associative and has the identity element 1. We must show that $(\mathbb{Z}_n \setminus \{0\}, \otimes)$ is an algebra and that every element in $\{1, 2, ..., n-1\}$ is invertible w. resp. to \otimes .

Recall a property of primes: *n* is a prime $\Leftrightarrow (\forall p, q)(n|pq \Rightarrow n|p \lor n|q).$

Take $k \in \{1, 2, ..., n-1\}$.

Consider all products of the form $k \otimes 1$, $k \otimes 2$, ..., $k \otimes (n-1)$.

The above property implies that none of k, 2k, 3k, ..., (n-1)k is divisible by n (because none of 1,2, ..., n-1 is).

Hence, $k \otimes 1$, $k \otimes 2$, ..., $k \otimes (n-1)$ are all from $\{1, 2, ..., n-1\}$.

This means that $(\mathbb{Z}_n \setminus \{0\}, \otimes)$ is an algebra.

n is a prime $\Leftrightarrow (\forall p, q)(n|pq \Rightarrow n|p \lor n|q).$

The numbers $k \otimes 1$, $k \otimes 2$, ..., $k \otimes (n-1)$ are also *pairwise different*: Suppose $k \otimes p = k \otimes q$. Then n | kp - kq, i.e., n | k(p-q) which means n | k – not a chance, or n | p - q. But $2 - n \le p - q \le n - 2$ and the only number within that bracket divisible by n is 0, so p - q = 0.

This means $\{k \otimes 1, k \otimes 2, ..., k \otimes (n - 1)\}$ is an *n*-1 element subset of the n - 1 element set $\{1, 2, ..., n - 1\}$ so the two sets are equal hence, one of $k \otimes 1, k \otimes 2, ..., k \otimes (n-1)$ must be equal to 1 - eventhough we don't know which one.

Back to POSETS

Comprehension. Prove or disprove:

If every proper subset of X is a chain, then X is a chain.

Solution attempt. Pick any $x, y \in X$. Since every proper subset of X is a chain, $\{x, y\}$ is a chain. Consequently, every two elements of X are *comparable* i.e., X is a chain. Clearly, in each case x is comparable to y, hence X is totally ordered by \leq . Is this OK? Not quite. We said "every proper subset of X is a chain" so the argument doesn't work for two-element sets X.

LEAST UPPER BOUND

Definition.

Let (X, \leq) be a poset and let $A \subseteq X$. An element $p \in X$ is called an *upper bound* for *A* iff for every $a \in A$, $a \leq p$. If the set of all upper bounds of *A* has the smallest element *t* then *t* is called the *least upper bound* of A. If it exists, *t* is denoted by *sup*(A) or LUB(A)

Exercise. Write this definition in the formal, symbolic form, i.e., complete the statement

 $t = \sup(A) \equiv \dots$

using only quantifiers, logical and mathematical symbols and, of course, variables

GREATEST LOWER BOUND

Definition. (Twin to LUB)

Let (X, \leq) be a poset and let $B \subseteq X$. An element $q \in X$ is called a *lower bound* for B iff for every $b \in B$, $q \leq b$. If the set of all lower bounds of B has the largest element *s* then *s* is called the *greatest lower bound* of *B*. If it exists, s is denoted by *inf*(*B*) or GLB(*B*).

Exercise. Write this definition using only ...blah, blah, blah...

Remark.

In the ETMAG course we mentioned that for every nonempty, bounded from above subset *A* of \mathbb{R} there exists the *least upper bound* (in \mathbb{R}). It may not be true in other posets. For example consider ({1,2,3}, |). Clearly, both 2 and 3 are upper bounds for {1} but there is no least upper bound.

Examples.

- 1. $(\mathbb{N}, |)$ For every finite subset A of \mathbb{N} sup(A) = LCM(A) (*Least Common Multiple*) and *inf*(A) = GCD(A) (*Greatest Common Divisor*).
- 2. (\mathbb{R},\leq) . What is sup((0;1)), sup([0;1]), inf((0;1)), inf([0;1])?
- 3. (\mathbb{Q},\leq) . What is $sup(\{x\in\mathbb{Q} \mid x^2 < 2\})$?
- 4. (\mathbb{R} , \leq). What is $sup(\{x \in \mathbb{R} | x^2 < 2\})$?
- 5. (\mathbb{Z}, \leq) . What is $sup(\{x \in \mathbb{Z} | x^2 < 2\})$?

Comprehention.

- 1. $(\mathbb{N}, |)$. What can you say about *sup* and *inf* of infinite subsets of \mathbb{N} ?
- 2. $(2^X, \subseteq)$. What is $sup(\{A_i\}_{i \in I})$ and what is $inf(\{A_i\}_{i \in I})$ for a family of subsets of *X* (meaning $A_i \subseteq X$ for each $i \in I$).

ORDER-PRESERVING FUNCTIONS

Definition.

Let (X, \leq) and (Y, \subseteq) be two posets and let f be a function mapping X into Y, i.e. $f : X \to Y$. We say that f is an *orderpreserving function* iff $(\forall a, b \in X)(a \leq b \Rightarrow f(a) \subseteq f(b))$.

We may think of order-preserving functions as *nondecreasing* functions.

Examples. Is the function *f* order-preserving?

Comprehension 1

Let (X, \leq) and (Y, \subseteq) be two posets and let f be an order preserving function

- 1. A is a chain in $X \Rightarrow f(A)$ is a chain in Y?
- 2. *A* is an antichain in $X \Rightarrow f(A)$ is an antichain in *Y*?

- a) What if *f* is an injection?
- b) What if *f* is a surjection?
- c) What if f is a bijection?

Comprehension 1

Let (X, \leq) and (Y, \subseteq) be two posets and let f be an order preserving function

- 3. *B* is a chain in $Y \Rightarrow f^{-1}(B)$ is a chain in *X*?
- 4. *B* is an antichain in $Y \Rightarrow f^{-1}(B)$ is an antichain in *X*?
- a) What if *f* is an injection?
- b) What if *f* is a surjection?
- c) What if *f* is a bijection?

Comprehension 1 (cont.)

Let (X, \leq) and (Y, \subseteq) be two posets and let f be an order preserving function

- 5. *p* is maximal in $X \Rightarrow f(p)$ is maximal in *Y*? minimal?
- 6. f(p) is maximal in $Y \Rightarrow p$ is maximal in X? minimal?
- a) What if *f* is an injection?
- b) What if *f* is a surjection?
- c) What if *f* is a bijection?

Comprehension meta test.

Construct the Hasse diagram for the poset whose elements are problems from Comprehension 1 (including sub-questions a,b,c) and the ordering relation is $q \leq p$ iff you consider question p not easier than q.

This is of course a very individual thing and it makes sense assuming that you have nothing better to do than solving all these problems, but have you? Seriously?